METALLORGANISCHE LEWIS-BASEN IV*. SCHWINGUNGSSPEKTROSKOPISCHE UNTERSUCHUNGEN ZUR NATUR DER BOR-SCHWEFEL-BINDUNG

HEINRICH VAHRENKAMP

Institut für Anorganische Chemie der Universität München (Deutschland) (Eingegangen den 30. November 1970)

SUMMARY

The infrared and Raman spectra of the boron-sulfur compounds $B(SCH_3)_3$, $CH_3B(SCH_3)_2$, $C_6H_5B(SCH_3)_2$, $(CH_3)_2B-SCH_3$, $(CH_3)_2B-SH$, $(CH_3)_2B-SC_6H_5$, $(C_6H_5)_2B-SCH_3$ and $(CH_3)_2B-S-B(CH_3)_2$ are reported, assigned, and discussed. B-S valence force constants are calculated for three typical compounds. They indicate that, in contrast to the corresponding boron-chlorine compounds, no π bonding occurs between boron and sulfur.

ZUSAMMENFASSUNG

Die Infrarot- und Ramanspektren der Bor-Schwefel-Verbindungen B(SCH₃)₃, CH₃B(SCH₃)₂, C₆H₅B(SCH₃)₂, (CH₃)₂B-SCH₃, (CH₃)₂B-SH, (CH₃)₂B-SC₆H₅, (C₆H₅)₂B-SCH₃ und (CH₃)₂B-S-B(CH₃)₂ werden mitgeteilt, zugeordnet und diskutiert. B-S-Valenzkraftkonstanten für drei typische Vertreter werden berechnet. Sie führen zu dem Schluss, dass im Gegensatz zu den entsprechenden Bor-Chlor-Verbindungen keine π -Bindung zwischen Bor und Schwefel besteht.

EINLEITUNG

Die Bindungen des Bors zu den Elementen Stickstoff, Sauerstoff und Fluor zeichnen sich durch hohe Bindungsgrade und verkürzte Bindungslängen aus. Als Ursache dafür wurde auf Grund zahlreicher physikalisch-chemischer und theoretischer Untersuchungen ein ausgeprägter π -Bindungsanteil in der B-N-, B-O- und B-F-Bindung erkannt^{2,3}. Die Bindungen des Bors zu den homologen Elementen Phosphor, Schwefel und Chlor sind noch nicht so ausführlich untersucht worden. Doch legen MO-Berechnungen⁴ und Schwingungsspektren^{5,6} einen mässigen π -Anteil auch in der B-Cl-Bindung nahe. Wenn nun Analogie zu den Elementen der ersten Achterperiode besteht, so sollte die Bor-Schwefel-Bindung ebenfalls einen deutlich erkennbaren Doppelbindungscharakter besitzen. Dieser wurde auch schon

^{*} Für III. Mitteilung siehe Ref. 1.

Zuordnung	(C _{3h})	IR	Raman	
			B(SCH ₃) ₃ ^a	BCl ₃ ^b
$\delta_{s}(SBS_{2})$	(E')		162 w	243
$\delta_{s}(BSC)$	(A')		235 w	
$\delta_{as}(BSC)$	(E')	307 m	305 m	
v _s (BS ₃)	(A')	410 vw	430 vs	472
y(BS ₃)	(A'')	474 vw	481 vw	455
v(CS)	(A',E')	709 m	705 s	
(BS3)	(E')	905/930 vs	906 vw	954
P(CH ₃)	178 - 1750 I	990 s	984 w	
S ₄ (CH ₃)		1320 s	1317 w	
$\delta_{as}(CH_3)$		1430 vs	1427 w	
Oberton	章 (2836 m	2835 vw	
v ₃ (CH ₃)		2925 s	2925 m	
vas(CH3)		2995 m	2998 m	

TABELLE 1

SCHWINGUNGSSPEKTREN VON B(SCH ₃) ₃ (ZUM	VERGLEICH BCl ₂)
----------------------------	--------------------------------------	------------------------------

" Siehe Ref. 8. b Siehe Ref. 13.

TABELLE 2

SCHWINGUNGSSPEKTREN VON CH3B(SCH3)2 (ZUM VERGLEICH CH3BCl2)

Zuordnung	(C2r)	IR	Raman			
			CH ₃ B(S	CH3)2	CH ₃ BCl ₂ ⁴	
$\delta_{s}(CBS_{2})$	(A ₁)		165 s	р	273 s	<i></i>
$\delta_{s}(BSC)$	(A_1)		235 s	p		
$\tau(BSC)$	(A_2)		280 w (S	ch)p		
τ(BSC)	(B_2)	295 vw	292 s	D		
$\delta_{as}(CBS_2)$	(B_1)	332 w	331 s	dp		
$\delta_{as}(BSC)$	(B_1)	384 w	382 w	dp		
y(CBS ₂)	(B_2)		431 vw	p	398 w	
$v_s(BS_2)$	(A_1)	519 m	517 vs	p	537 vs	
v(CS)	(A_1B_1)	708 m	713 vs	dp		
		(772 s	775 m	dp	765 w	
		835 m	835 w	dp	825 w	
$\rho(CH_3)$) 962 s	963 m	dp		
12 Anna Anna Anna Anna Anna Anna Anna Ann		995 w	990 m	p	1010 m	
vas(BS2)	(<i>B</i> ₁)	1026/1052 vs	1029 vw	dp	1065 w	
v(BC)	(A_1)	1073/1105 s	1074 w	р	1090 w	
δ ₃ (BCH ₃)		1301 s	1302 m	p	1305 w	
$\delta_3(SCH_3)$		1319 m	1319 m	p		
$\delta_{as}(CH_3)$		(1430 s	1432 m	dp	1427 w	
Kombinationen		{	2799 m	p		
		2842 m	2838 m	p		
v, (BCH ₃)		2900 w, Sch	2897 s	p	2905 vs	
v_{x} (SCH ₃)		2930 s	2926 vs	p		
vas(CH ₃)		3000 m	2996 m	dp	2995 w	

" Siehe Ref. 17.

METALLORGANISCHE LEWIS-BASEN. IV

Zuordnung	(C2r)	(CH3)2B–SCH3 IR	(CH ₃) ₂ B- Raman	SCH3	(CH ₃) ₂ B–SH IR	(CH ₃) ₂ BCl Raman ⁴
$\delta_{s}(BC_{2})$	(A ₁)		210 m	р		307 s
$\delta_{as}(BC_2)$ $\delta(BSC)$	(B_1)		298 s 352 s	dp	285 w	307 s
$\gamma(C_2BS)$	(<i>B</i> ₂)	455 w	452 vw	dp	425 m	433 w
			512 m 541 m	р р		
v(BS)	(A_1)	575 s	574 vs	p	582 m	579 vs
v(SC)		712 vw	716 vs	dp	730 vw	132 VW
		$\int_{824}^{824} m$	825 m	P .	815 m	825 m
$\rho(CH_3)$		961 m	894 w 964 w	dp	951 m	864 W 1006 w
v _s (BC ₂)	(A_1)	1089/1119 vs	1087 m	р	1085 s	1064 m
$v_{as}(BC_2)$	(<i>B</i> ₁)	1129/1161 s	1122 w	dp	1136 vs	1140 m
O _s (CH ₃)		1301 vs (1375 s	1297 m	Р	1300 s	1292 w
δ _{as} (CH ₃)		1436 m (Sch)	1432 m	dp	1405 vs	1440 w
Kombination		2850 w	2848 m	D	2390 VW	
(BCH ₃)		2890 m (Sch)	2890 s	p		2898 s
(SCH ₃)		2940 s	2940 s	p		
(CH ₃)		3000 m (Sch)	2996 w	dp	2960 s	2990 w

TABELLE 3

SCHWINGUNGSSPEKTREN VON (CH₃)₂B-SH UND (CH₃)₂B-SCH₃ (ZUM VERGLEICH (CH₃)₂BCI)

^a Siche Ref. 17.

zur Deutung der Struktur und Reaktivität von Thioboranen herangezogen⁷. NMRspektroskopische Untersuchungen führten jedoch zu dem Ergebnis, dass in der B-S-Bindung kein Doppelbindungsanteil enthalten ist¹.

Zur Auflösung dieser Diskrepanz wird in der vorliegenden Arbeit als weitere Messmethode die Schwingungsspektroskopie verwendet. IR- und Ramanspektren von Bor-Schwefel-Verbindungen wurden bisher nur in einigen Fällen beschrieben⁸⁻¹² und nur für die Verbindung B(SCH₃)₃^{8,9} wurde eine auf dem Raman-Spektrum basierende vollständige Zuordnung versucht. Da sich jedoch die meisten B-X-Kraftkonstanten und damit die Bindungsgrade mit der Zahl der an das Bor gebundenen X-Atome ändern, kann auch bei den Thioboranen nur ein Vergleich verschiedenartiger Verbindungstypen Aussagen über Grösse und Variabilität des Bor-Schwefel-Doppelbindungsanteils liefern. Deshalb wurden Thioborane, in denen das B/S-Verhältnis von 2/1 bis 1/3 variiert, IR- und Ramanspektroskopisch vermessen.

SPEKTREN

In den Tabellen 1–7 sind die IR und Raman-Spektren der Verbindungen $B(SCH_3)_3$, $CH_3B(SCH_3)_2$, $C_6H_5B(SCH_3)_2$, $(CH_3)_2B-SCH_3$, $(CH_3)_2B-SCH, (CH_3)_2-B-SC_6H_5$, $(C_6H_5)_2B-SCH_3$ und $(CH_3)_2B-S-B(CH_3)_2$ zusammen mit einigen Vergleichsspektren angegeben. Bei der Angabe der Intensitäten in den Tabellen bedeutet vw sehr schwach, w schwach, m mittel, s stark, vs sehr stark, p polarisiert, dp depolarisiert, Sch Schulter. Alle Zahlenangaben sind in cm⁻¹.

TABELLE 4

Zuordnung	(C _{2r})	$(CH_3)_2B-SC_6H_5$	HSC ₆ H₅
$\delta_{as}(BC_2)$	(B ₁)	290 w	
		428 w	
γ(C ₂ BS)	(B ₂)	467 w	469 s
	80,8000	500 s	
v(BS)	(A_1)	581 m	
		691 vs	690 vs
		746 vs	737 vs
$\rho(CH_3)$		826 m	
		889 m	900 m
		910 w	920 m
		1004 vw	1002 vw
		1029 s	1029 s
v _s (BC ₂)	(A_1)	1073/1107 vs	1073 w
			1094 s
vas(BC ₂)	(B_1)	1130/1161 s	1120 m
			1184 w
$\delta_{3}(CH_{3})$		1300 vs	1303 w
$\delta_{as}(CH_3)$		1420 w	
		1440 s	1444 vs
		1474 s	1480 vs
		1585 s	1584 s
v(SH)			2569 m
v ₃ (CH ₃)		2927 m	
vas(CH ₃)		2960 m	
		3060 m	3060 m
		3205 w	3210 w

IR-SPEKTREN VON (CH3)2B-SC6H5 UND HSC6H5

DISKUSSION

A. Symmetrien

Bei allen Verbindungen des dreibindigen Bors liegt das Boratom mit den drei an ihm gebundenen Atomen in einer Ebene. Demnach hat ein BX_3 -Gerüst immer D_{3h} , ein BX_2Y -Gerüst immer C_{2v} -Symmetrie. Sind jedoch an die Erstsubstituenten X und Y des Bors noch weitere Atome gebunden, so ist Erniedrigung der Symmetrie möglich. Dies ist bei allen hier untersuchten Verbindungen der Fall. So ist zum Beispiel für B(SCH₃)₃ die Symmetrie des BS₃-Gerüstes D_{3h} , jedoch wird das Gesamtmolekül bei unregelmässiger Anordnung der Methylgruppen keinerlei Symmetrieelement enthalten.

Erfahrungsgemäss haben nun H-Atome nur einen geringen Einfluss auf die schwingungsspektroskopisch zu ermittelnde Molekülsymmetrie¹³. So lässt sich das $B(CH_3)_3$ als zweidimensionales BX_3 mit D_{3h} -Symmetrie behandeln, wobei der Gruppe X=CH₃ die Atommasse 15 zukommt¹⁴. Ebenso entsprechen die Schwingungsspektren des (CH₃)₃Si-SH denjenigen eines (CH₃)₃SiX-Moleküls mit C_{3v} -Symmetrie¹⁵, wobei die SH-Gruppe in der Kraftkonstantenberechnung die Masse 33 hat. Demnach sollte sich auch das (CH₃)₂B-SH als ein aus vier Massen zusammengesetz-

METALLORGANISCHE LEWIS-BASEN. IV

Zuordnung	(C _{2v})	IR	Raman	
$\delta(SB_2)$	(A ₁)		152 w	p
$\delta (BC_{2})$	(B_1)		249 w	dp
$\delta_{1}(BC_{2})$	(A,)		281 m	p
$\delta_{n}(BC_{2})$	(A_2)		356 w	dp
$\delta_{as}(BC_2)$	(B_2)		400 w	dp
y(SBC ₂)	(A_1)		475 w	р
$\gamma(SBC_{2})$	(B_1)	495 vw	492 w	dp
v (SB ₂)	(A_1)	545 w	543 vs	Р
$v_{as}(SB_2)$	(B_1)	594 s	580 vw	dp
	$\int \frac{1}{2}$		622 w	р
			763 т	dp
ρ(CH ₃)	{		788 m	dp
		808 m	829 m	р
	l	883 m	894 m	dp
$v_s(BC_2)$	$(B_1)^a$	1052 vs	1050 w	dp
$v_{s}(BC_{2})$	$(A_1)^a$	1084 s	1085 m	р
$v_{as}(BC_z)$	$(A_2)^{\alpha}$	1140 s	1141 m	dp
$v_{as}(BC_2)$	$(B_2)^{\alpha}$	1165 m	1162 w	dp
$\delta_{3}(CH_{3})$	、	1298 w	1294 w	p
$\delta_{a}(CH_3)$		1418 m	1420 m	dp
v.(CH ₃)		2900 (Sch)	2890 w	p
v _{as} (CH ₃)		2970 m	2990 vw	dp

SCHWINGUNGSSPEKTREN VON (CH3), B-S-B(CH3),

^a Möglicherweise sind die Banden bei 1052/1084 bzw. 1140/1165 ¹⁰B/¹¹B Dubletts.

tes BX_2Y -Molekül mit C_{2v} -Symmetrie ansehen lassen.

Die Anwesenheit von am Schwefel gebundenen organischen Gruppen senkt die Molekülsymmetrie drastisch. So kann das $(CH_3)_2B$ -SCH₃ maximal C_s -Symmetrie mit ebener Anordnung aller schweren Atome haben. Diese Erniedrigung der Symmetrie macht sich jedoch nicht in einer Erhöhung der Zahl der Grundschwingungen des C_2BS -Gerüstes bemerkbar, weil auch bei C_{2v} -Symmetrie dieses Gerüstes schon alle 6 Grundschwingungen im Infrarot- und Raman-Spektrum aktiv sind und nur eine C-S-Schwingung hinzukommt. Ähnliches gilt für das $CH_3B(SCH_3)_2$, welches ohne Berücksichtigung der schwefelgebundenen CH₃-Gruppen angenäherte C_{2v} -Symmetrie besitzt. Hier sind aber bei jeder Symmetrie zwei C-S-Schwingungen zu erwarten, während nur eine beobachtet wird. Die C-S-Schwingung verhält sich also wie eine charakteristische Gruppenfrequenz, die nicht mit den anderen Schwingungen in Wechselwirkung tritt und damit keinen Aussagewert für die schwingungsspektroskopisch zu ermittelnde Symmetrie des CB(SC)₂-Gerüstes hat. Gleichermassen tritt auch beim B(SCH₃)₃ nur eine C-S-Schwingung auf, während zwei bzw. drei zu erwarten sind. Dieses Molekül hat nach den Untersuchungen von Goubeau und Wittmeier⁸ nach Aussage seines Raman-Spektrums die maximale Symmetrie C_{3h} mit ebener Anordnung aller schweren Atome. Die Entartung der C-S-Schwingungen beruht nach diesen Autoren auf dem nahe bei 90° liegenden Valenzwinkel am Schwefel.

Es erscheint also gerechtfertigt, bei der Zuordnung der Gerüstschwinungen der hier untersuchten Verbindungen immer die maximale Symmetrie zugrundezule-

Zuordnung	C ₆ H ₅ B(SCH ₃) ₂	C ₆ H ₅ BCl ^a ₂
$\delta_{a}(BCl_2)$		330 s
	380 vw	380 s
y(CBX ₂)	534 m	552 s
	550 w	567 m
	578 vw	584 vw
	620 w	620 w
$v_{1}(BX_{2})$	632 m	637 s
	701 vs	692 vs
	746 s	753 s
	882 s	898 s
var(BX)	908/936 vs	916/949 vs
	984 m	1005 w
	1070 w	
	1185 vw	1190 w
v(BC)	1218 vs	1230 vs
	1230 m	1250 m
	1273 w	1270 w
$\delta_{3}(SCH_{3})$	1320 m	
$\delta_{as}(SCH_3)$	1431 s	i 440 m
		1490 w
	1595 m	1610 m
	2840 w	2840 w
v _s (SCH ₃)	2926 s	2915 w
vas(SCH3)	3015 m	3010 w
	3050 m	3049 m
	3075 m	3076 m

IR-SPEKTREN VON C.H.B(SCH2), UND C.H.BCI2

" Siehe Ref. 20.

gen, die durch das Bor und seine drei Erstsubstituenten gegeben ist. Dies ist in den Tabellen 1–7 geschehen, soweit Zuordnungen gegeben sind. Gestützt wird diese Vereinfachung durch die konstante Lage der B–S-Schwingung in den drei Verbindungen $(CH_3)_2B$ –SR (R = H, CH₃, C₆H₅); denn obwohl die Masse der Gruppe R hier zwischen 1 und 77 schwankt, bleibt sie ohne Einfluss auf die B–S-Schwingungsfrequenz. Weitherhin entsprechen die starken Intensitätsunterschiede und das Polarisationsverhalten der Schwingungsspektren in allen untersuchten Fällen den Auswahlregeln für die höchstmögliche Symmetrie.

Für die Verbindung $(CH_3)_2B-S-B(CH_3)_2$ ergab die NMR-spektroskopische Analyse eine $C_{2\nu}$ -Symmetrie des Gesamtmoleküls mit dachförmiger Anordnung der $(CH_3)_2B$ -Gruppen¹. Die Anzahl, Intensität und Polarisation der Molekülschwingungen ist mit dieser Symmetrie in Einklang.

B. Zuordnungen

Die Zuordnung der Gerüst-Valenzschwingungen der untersuchten Bor-Schwefel-Verbindungen bereitete keine Schwierigkeiten, da in ausreichendem Masse Vergleichsmaterial zur Verfügung steht. In den Tabellen 1–3, 6 und 7 sind jeweils die Schwingungsspektren der am besten vergleichbaren Borverbindungen, in denen die

TABELLE 7

Zuordnung	(C ₆ H ₅) ₂ B-SCH ₃	(C ₆ H ₅)₂BCl
	555 m	562 m
	592 m	582 m
	607 m	598 m
	618 w	618 w
	638 s	
	661 m	664 m
	695 vs	690 vs
	743 s	743 s
	755 s	760 s
	772 т	
	852 w	848 w
v(BX)	899/931 s	885/910 vs
•	970 vw	970 vw
	999 m	997 m
	1031 m	1029 m
	1070 w	1068 w
$v_s(BC_2)$	1177 s	1172 s
$v_{as}(BC_2)$	1259 vs	1266 vs
$\delta_{s}(CH_{3})$	1316 s	
$\delta_{as}(CH_3)$	1385 s	
0.000	1435 vs	1430 s
	1490 w	1489 w
	1595 s	1587 s
	2840 vw	
$\delta_{s}(CH_{3})$	2925 w	
$\delta_{a}(CH_3)$	3010 m	
	3049 m	3042 m
	3077 m	3070 m

IR-SPEKTREN VON (C6H5)2B-SCH3 UND (C6H5)2BCI

 SCH_3 -Gruppe durch ein Chloratom ersetzt ist, mit angegeben. Die Zuordnung dieser Vergleichsspektren ist durch Kraftkonstantenberechnung gesichert. Besonders die mit der CH_3BX_2 - bzw. $(CH_3)_2BX$ -Gruppierung verbundenen B-C- und C-H-Schwingungen liessen sich leicht aus den Spektren eliminieren, da sie vielfach untersucht worden sind¹⁶⁻¹⁹. Für die Zuordnung der B-S-Valenzschwingungen war die Lage der B-Cl-Schwingungen sehr hilfreich. Erwartungsgemäss unterscheiden sich diese Schwingungen nicht erheblich, was auch für C-S- und C-Cl-Schwingungen gilt¹³. Da die meisten B-S-Valenzschwingungen relativ isoliert liegen, kann ihre Zuordnung als gesichert angesehen werden. Die ausgeführten Kraftkonstantenberechnungen stehen damit in Einklang (s.u.).

Nicht in allen Fällen sicher zuzuordnen sind die unterhalb von 500 cm⁻¹ gelegenen Gerüstdeformationsschwingungen. In den Tabellen angegeben sind die wahrscheinlichsten Zuordnungen, die sich mit Hilfe der Vergleichsspektren, auf Grund der Bandenintensität im Infrarot- und Ramanspektrum sowie des Polarisationsgrades im Raman-Spektrum ergaben. Es treten jedoch einige Zweideutigkeiten auf, die nur durch eine vollständige Kraftkonstantenberechnung zu lösen sind.

Bei den Verbindungen, die Phenylgruppen enthalten, wurde auf eine Zuordnung der Schwingungen des C_6H_5 -Gerüstes verzichtet. Die Gegenüberstellung mit vergleichbaren Phenylverbindungen (vgl. Tabellen 4, 6 und 7) zeigt, dass diese Schwingungen praktisch konstante Lage haben und für die Diskussion der B-S-Bindung ohne Bedeutung sind. Besonders das IR-Spektrum von $(CH_3)_2B-SC_6H_5$ lässt sich ohne Schwierigkeiten durch Superposition der Spektren von $(CH_3)_2B-SH$ und HSC_6H_5 zusammensetzen.

Die Zuordnung einiger Valenzschwingungen, an denen das Boratom beteiligt ist, wird erleichtert durch das Auftreten der typischen Dublettbande, deren Intensitätsverhältnis dem ¹⁰B/¹¹B-Isotopenverhältnis entspricht.

C. Kraftkonstanten

Um die bisher gewonnene Aussage, dass B-S- und B-Cl-Valenzschwingungsfrequenzen etwa gleich gross sind, präzisieren zu können, sind Berechnungen der B-S-Valenzkraftkonstanten nötig. Diese wurden in vereinfachter Form an den drei Molekülen B(SCH₃)₃, (CH₃)₂B-SH und S[B(CH₃)₂]₂ vorgenommen. In diesen Molekülen beträgt das B/S-Verhältnis 1/3, 1/1 und 2/1. Wenn also B-S- π -Bindung und angenäherte sp²-Konfiguration am Schwefel vorliegt, so ist der maximale B-S-Doppelbindungsanteil im ersten Fall 1/3, im zweiten 1, und im dritten Fall 1/2.

 $B(SCH_3)_3$. Goubeau und Wittmeier⁸ berechneten die B–S-Valenzkraftkonstante für dieses Molekül zu etwa 3.2 mdyn/Å. Da sie jedoch die $v_{as}(BS_3)$ -Schwingung falsch zugeordnet hatten⁹, ist dieser Wert zu hoch. Es wurde deshalb eine Neuberechnung vorgenommen. Dazu wurde das modifizierte Valenzkraftmodell für ebene XY₃-Moleküle verwendet^{22,23}, welches für die Borhalogenide Valenzkraftkonstanten liefert, die sich nicht stark von denen der exakteren Verfahren, z.B. des Fadini-Verfahrens⁵ unterscheiden. Der SCH₃-Gruppe wurde die Atommasse 33 zugeordnet, was der Masse einer SH-Gruppe entspricht. Die Rechtfertigung für diesen Wert ergibt sich aus der Tatsache, dass v(BS) in $(CH_3)_2B$ -SH und $(CH_3)_2B$ -SCH₃ praktisch gleich ist: Wie bei Goubeau⁸ wurde für die Rechnung $\delta(SBS_2)$ höher als beobachtet eingesetzt (250 cm⁻¹), doch sei hier bemerkt, dass diese Grösse auf den Wert der B–S-Valenzkraftkonstanten nahezu ohne Einfluss ist.

Die Berechnung mit den vier Grundschwingungen v_s , v_{as} , δ und γ des BS₃-Fragments lieferte die folgenden Werte:

= 2.71 mdyn/Å	1
= 0.45 mdyn/Å	ł
= 0.29 mdyn/Å	ł
= 0.45 mdyn/Å	1
	= 2.71 mdyn/Å = 0.45 mdyn/Å = 0.29 mdyn/Å = 0.45 mdyn/Å

Nach der Siebert-Regel¹³ berechnet sich die Valenzkraftkonstante einer B-S-Einfachbindung zu 2.6 mdyn/Å. Dieser Wert stimmt innerhalb der Genauigkeitsgrenze des angewendeten Verfahrens mit dem ermittelten Wert überein. In $B(SCH_3)_3$ liegt demnach nur B-S-Einfachbindung vor.

 $(CH_3)_2B$ -SH. In den Verbindungen $(CH_3)_2B$ -XR_n mit X = C, N, O, F besteht eine starke Kopplung zwischen $v_s(BC_2)$ und v(BX). Dadurch sind die Schwingungen des C₂B-Fragmentes nicht charakteristisch, sondern variieren mit X^{14,16,18,24}. Die Ursache für diese Erscheinung liegt in der vergleichbar grossen Masse der ans Bor gebundenen Atome. Für X = S, Cl, Br tritt die Kopplung nicht mehr auf. Tabelle 8 verdeutlicht dies an den 6 Grundschwingungen des C₂BX-Gerüstes. Von diesen sind die drei, an denen X nicht beteiligt ist $[v_s(BC_2), v_{as}(BC_2), \delta_s(BC_2)]$, praktisch lagekonstant, und die beiden, an denen das schwere X nur wenig beteiligt ist $[\delta_{as}(BC_2), \gamma(XBC_2)]$,

METALLORGANISCHE LEWIS-BASEN. IV

Zuordnung	х					
	Br	Cl	SH	SCH ₃	SC6H	
$\delta_{3}(BC_{2})$	278	307		298		
$\delta_{as}(BC_2)$	278	307	285	298	290	
$\gamma(XBC_2)$	328	433	425	455	467	
v(BX)	494	579	582	575	581	
v.(BC)	1048	1064	1085	1089	1073	
vas(BC ₂)	1142	1140	1136	1129	1130	

TABELLE 8

GERÜSTSCHWINGUNGEN VON VERBINDUNGEN (CH3), B-X

variieren nur wenig, während v(BX) sich mit der Masse von X ändert, doch innerhalb der Schwefelverbindungen konstant ist.

Es erscheint deshalb gerechtfertigt, in diesen Verbindungen die $(CH_3)_2B$ -Gruppe als starre Masse zu betrachten. Unter dieser Voraussetzung lässt sich die B-X-Kraftkonstante mit dem Zweimassemodell berechnen. Die dazu benötigte scheinbare Masse der $(CH_3)_2B$ -Gruppe lässt sich ermitteln, wenn man die B-X-Kraftkonstanten des $(CH_3)_2BCl^{17}$ und des $(CH_3)_2BBr^{19}$, die mit einem vollständigen Potentialansatz gewonnen wurden, in das Zweimassemodell einsetzt. Für $(CH_3)_2BCl [k(BCl) 2.5$ mdyn/Å] errechnet sie sich zu 19.4 Atomgewichtseinheiten, für $(CH_3)_2BBr [k(BBr)$ 2.5 mdyn/Å] zu 22.3 Atomgewichtseinheiten. Das durchschnittliche scheinbare Molekulargewicht der $(CH_3)_2B$ -Gruppe wird damit etwa 21. Die Abweichung der Einzelwerte von dem Durchschnitt wird der Fehlergrenze dieses vereinfachten Rechenverfahrens entsprechen. Die Unsicherheit der zu ermittelnden B-S-Valenzkraftkonstanten beträgt demnach etwa 10%.

Unter Verwendung der so erhaltenen scheinbaren Massen für $(CH_3)_2B$ (21) und SH (33) errechnet sich mit dem Zweimassenansatz aus der B-S-Schwingungsfrequenz von 582 cm⁻¹ eine B-S-Valenzkraftkonstante k(BS)=2.57 mdyn/Å. Diese Zahl ist innerhalb der Fehlergrenzen mit der oben gewonnenen für B(SCH₃)₃ identisch und entspricht wiederum dem Siebert'schen Einfachbindungswert.

 $S[B(CH_3)_2]_2$. Dieses Molekül lässt sich als gewinkeltes Dreimassensystem XY₂ behandeln, wobci die (CH₃)₂B-Gruppen wiederum als Einheiten mit der Masse 21 eingesetzt werden. Von den drei Grundschwingungen des SB₂-Gerüstes sind v_s und v_{as} ohne Schwierigkeiten zuzuordnen. Die Lage der Deformationsschwingung ist dagegen nicht eindeutig, es kommen dafür die beiden polarisierten Raman-Linien bei 152 und 281 cm⁻¹ in Betracht (vgl. Tabelle 5). Die für beide Fälle durchgeführte Rechnung zeigt wiederum, dass k(BS) von der Deformationsfrequenz nur wenig abhängt.

In den Schwingungsgleichungen für das gewinkelte XY_2^{13} stehen den drei Frequenzen fünf unbekannte Grössen gegenüber. Dies sind die Valenzkraftkonstante k(BS), die Deformationskraftkonstante k(BSB), zwei Wechselwirkungskonstanten k(BS/BS) und k(BS/BSB) und der BSB-Valenzwinkel α . Zur Berechnung müssen also Vereinfachungen gemacht und die vermutlich kleinsten Grössen vernachlässigt werden. Berechnungen von dreiatomigen Molekülen XY_2 haben gezeigt, dass die Wechselwirkungskonstanten meist sehr kleine Werte haben¹³. Setzt man also k(BS/BS) und

k(BS/BSB) gleich Null, dann sind Valenz- und Deformationskraftkonstante sowie der BSB-Winkel zu berechnen. Im Einzelnen ergab sich für S[B(CH₃)₂]₂:

 $\begin{array}{ll} \min \delta &= 152 \ {\rm cm}^{-1} & \min \ \delta = 281 \ {\rm cm}^{-1} \\ k({\rm BS}) &= 2.42 \ {\rm mdyn/\AA} & k({\rm BS}) \ 2.36 \ {\rm mdyn/\AA} \\ k({\rm BSB}) &= 0.09 \ {\rm mdyn/\AA} & k({\rm BSB}) &= 0.33 \ {\rm mdyn/\AA} \\ \alpha &= 104^{\circ} & \alpha &= 108^{\circ}. \end{array}$

Wird andererseits der Valenzwinkel am Schwefel mit 105° angesetzt, wie es in fast allen Verbindungen des zweibindigen Schwefels der Fall ist²⁵ und nur k(BS/BSB) vernachlässigt, dann errechnet sich:

mit δ	$=152 \text{ cm}^{-1}$	mit δ	$= 281 \text{ cm}^{-1}$
k(BS)	= 2.42 mdyn/Å	k(BS)	= 2.35 mdyn/Å
k(BS/BS)	= 0.02 mdyn/Å	k(BS/BS	= -0.05 mdyn/Å
k(BSB)	= 0.09 mdyn/Å	k(BSB)	= 0.34 mdyn/Å.

Das wichtigste Ergebnis hieraus ist, dass die B-S-Valenzkraftkonstante in allen vier Fällen etwa 2.4 mdyn/Å beträgt, damit auch hier nahe am Einfachbindungswert liegt und dass der Valenzwinkel am Schwefel mit einiger Sicherheit dem normalen Wert von 105° entspricht.

D. Die Bor-Schwefel-Bindung

Die B–S-Valenzkraftkonstante in den drei hier berechneten Molekülen ist innerhalb der Fehlergrenzen konstant und hat einen Wert von 2.55 ± 0.15 mdyn/Å. Der sich nach Siebert berechnende Wert für eine B–S-Einfachbindung beträgt 2.6 mdyn/Å. Daraus muss geschlossen werden, dass in den Schwefelverbindungen des dreibindigen Bors B–S-Einfachbindungen ohne π -Bindungsanteil vorliegen.

Die B–Cl-Valenzkraftkonstanten variieren mit dem B/Cl-Verhältnis im Molekül. So errechnet sich aus dem Wert von 3.8 mdyn/Å im BCl₃ ein B–Cl-Bindungsgrad von 1.24⁵, während der Wert von 2.5 mdyn/Å im (CH₃)₂BCl auf eine B–Cl-Einfachbindung hindeutet¹⁷. Als Erklärung dafür wird angenommen, dass beim Cl₂B–Cl im Gegensatz zum (CH₃)₂B–Cl durch die elektronegativen Chloratome der induktive Elektronenzug am Bor verstärkt wird und damit mehr π -Elektronendichte zum Bor herüberwandert. CH₃BCl₂ nimmt eine Zwischenstellung zwischen (CH₃)₂BCl und BCl₃ ein¹⁷.

Diese Abstufung der Bindungsstärke ist in der vergleichbaren Substanzreihe $B(SCH_3)_3$, $CH_3B(SCH_3)_2$, $(CH_3)_2B-SCH_3$ nicht mehr gegeben. Qualitativ wird das durch eine Gegenüberstellung der B-Cl- und B-S-Valenzschwingungsfrequenzen der entsprechenden Moleküle verdeutlicht. Da die Masse des Cl-Atoms und die effektive Masse der SCH_3-Gruppe praktisch gleich sind, sollte man bei vergleichbaren Kraft-konstanten vergleichbare Schwingungsfrequenzen erwarten. Dies tritt bei dem Vergleichspaar (CH_3)_2BCl/(CH_3)_2B-SCH_3 ein : man beobachtet nahezu gleiche B-S- und B-Cl-Valenzschwingungsfrequenzen. Bei dem Paar CH_3BCl_2/CH_3B(SCH_3)_2 sind dagegen die B-Cl-Frequenzen um durchschnittlich 25 cm⁻¹, bei dem Paar BCl_3/B-(SCH_3)_3 um durchschnittlich 45 cm⁻¹ höher als die entsprechenden B-S-Frequenzen (vgl. Tabellen 1-3). Mit zunehmender Substitution bleibt also die B-S-Bindungsstärke hinter der B-Cl-Bindungsstärke zurück.

Eine Erklärung dafür ist die gegenüber dem Chlor geringere Elektronegativität des Schwefels, die der des Kohlenstoffs entspricht. Dadurch ist der auf das Bor ausgeübte induktive Effekt im B(CH₃)₃ und im B(SCH₃)₃ gleich, während er vom B(CH₃)₃ zum BCl₃ hin stark zunimmt und so die B-Cl- π -Bindung begünstigt. Die mit diesem induktiven Effekt verbundene Positivierung des Cl-Atoms führt zur Orbitalkontraktion, wodurch die π -Orbitale des Chlors besser mit dem leeren *p*-Orbital des Bors überlappen können. Das Schwefelatom, das ohnehin einen grösseren Radius als das Chloratom hat, unterliegt nicht dieser induktiven Orbitalkontraktion. B-S- π -Bindung ist daher energetisch ungünstiger und wird auch durch zunehmende Zahl von am Bor gebundenen Schwefelsubstituenten nicht verbessert, in Übereinstimmung mit der gefundenen Konstanz der B-S-Valenzkraftkonstanten.

B-S- π -Bindung im S[B(CH₃)₂]₂ sollte sich in einer Winkelaufweitung am Schwefel bemerkbar machen, der dabei sp^2 -Konfiguration anstrebt⁷. Die ausgeführten Rechnungen sind jedoch im Einklang mit einem normalen Valenzwinkel am Schwefel von etwa 105°. Damit machen die Schwingungsspektren ebenso wie die NMR-Spektren¹ auch für dieses Molekül die B-S- π -Bindung unwahrscheinlich.

Bei den Phenylbormercaptiden und -chloriden liegen die symmetrischen B-Sbzw. B-Cl-Valenzschwingungsfrequenzen bei wesentlich höheren Wellenzahlen als in den entsprechenden Methylverbindungen. Da kaum eine so drastische Erhöhung der Kraftkonstanten zu erwarten ist, muss zur Erklärung Kopplung dieser Schwingungen mit anderen Molekülschwingungen angenommen werden. Ansonsten bestätigen die IR-Spektren dieser Substanzen die grosse Ähnlichkeit im Schwingungsbild von Bor-Schwefel- und Bor-Chlor-Verbindungen.

EXPERIMENTELLES

Alle IR-Spektren wurden zwischen 4000 und 250 cm⁻¹ auf einem Beckman-IR-10-Gerät aufgenommen, die Raman-Spektren auf einem Coderg PH 1 Laser-Raman-Gerät unter Anregung mit der Krypton 6471 Å-Linie. Mit Ausnahme des gasförmigen $(CH_3)_2B$ -SH wurden alle Substanzen in der flüssigen Phase vermessen. Die Verbindungen B(SCH₃)₃, C₆H₅B(SCH₃)₂ und (C₆H₅)₂B-SCH₃ wurden freundlicherweise von Herrn Dipl.-Chem. U. Schuchardt, die Verbindung CH₃B(SCH₃)₂ freundlicherweise von Herrn Dipl.Chem. D. Nölle zur Verfügung gestellt. Die Darstellung der übrigen Verbindungen ist in der vorhergehenden Arbeit¹ beschrieben.

DANK

Herrn Prof. Dr. H. Nöth gilt mein Dank für die Förderung dieser Arbeiten aus Sachmitteln des Instituts, Herrn Dipl.Chem. C. Oetker sei an dieser Stelle für die Aufnahme der Raman-Spektren gedankt.

LITERATUR

- 1 H. VAHRENKAMP, J. Organometal. Chem., 28 (1971) 167.
- 2 D. R. ARMSTRONG UND P. G. PERKINS, J. Chem. Soc. A, (1969) 1044.
- 3 D. R. ARMSTRONG UND P. G. PERKINS, Theor. Chim. Acta, 15 (1969) 413.
- 4 M. F. LAPPERT, M. R. LITZOW, J. B. PEDLEY, P. N. K. RILEY UND A. TWEEDALE, J. Chem. Soc. A, (1968) 3105.

- 5 W. SAWODNY, A. FADINI UND K. BALLEIN, Spectrochim. Acta, 21 (1965) 995.
- 6 H. J. BECHER, Z. Anorg. Allg. Chem., 271 (1953) 243.
- 7 W. SIEBERT, E. GAST UND M. SCHMIDT, J. Organometal. Chem., 23 (1970) 329.
- 8 J. GOUBEAU UND H. W. WITTMEIER, Z. Anorg. Allg. Chem., 270 (1952) 16.
- 9 A. CABANA, J. BRAULT UND J. M. LALANCETTE, Spectrochim. Acta, 22 (1966) 377.
- 10 M. F. HAWTHORNE, J. Amer. Chem. Soc., 83 (1961) 1345.
- 11 M. SCHMIDT UND W. SIEBERT, Chem. Ber., 102 (1969) 2752.
- 12 A. FINCH UND J. PEARN, Tetrahedron, 20 (1964) 173.
- 13 H. SIEBERT, Anwendungen der Schwingungsspektroskopie in der Anorganischen Chemie, Springer, Berlin, 1966.
- 14 J. GOUBEAU UND H. J. BECHER, Z. Anorg. Allg. Chem., 268 (1952) 1.
- 15 H. KRIEGSMANN, Z. Anorg. Allg. Chem., 294 (1958) 113.
- 16 H. J. BECHER UND J. GOUBEAU, Z. Anorg. Allg. Chem., 268 (1952) 133.
- 17 H. J. BECHER, Z. Anorg. Allg. Chem., 271 (1953) 243.
- 18 H. J. BECHER, Z. Anorg. Allg. Chem., 291 (1957) 151.
- 19 W. SCGABACHER UND J. GOUBEAU, Z. Anorg. Allg. Chem., 294 (1958) 183.
- 20 J. C. LOCKHART, J. Chem. Soc. A, (1966) 1552.
- 21 H. SCHÄFER, Dissertation, Universität Marburg, 1969.
- 22 T. F. ANDERSON, E. N. LASETTRE UND D. M. YOST, J. Chem. Phys., 4 (1936) 703.
- 23 T. WENTINK UND V. H. TIENSU, J. Chem. Phys., 28 (1958) 826.
- 24 J. GOUBEAU UND J. W. EWERS, Z. Phys. Chem., N.F. 25 (1960) 276.
- 25 L. E. SUTTON, Tables of Interatomic Distances, Chem. Soc., London, Spec. Pub. No. 11 (1958) und No. 18 (1965).
- J. Organometal. Chem., 28 (1971) 181-192